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ABSTRACT: Organic ferroelectrics with high dielectric constant have
received substantial attention for sustainable and flexible energy storage.
Here, we report a high-κ dielectric, optically transparent, mechanically
strong and flexible dielectric polymer produced by in situ formation of
biaxial ferroelectric-molecule-modified poly(vinyl alcohol) (PVA). The
composite film was fabricated by solution casting of a PVA solution
containing water-soluble dielectric crystals [Hdabco]ClO4. Atomic force
microscopic and polarized optical microscopic studies showed a uniform
dispersion of TEDA.C crystals with tunable rod-like or dendritic
microstructures in the PVA matrix. Because of the good compatibility
and hydrogen bonds between PVA and TDEA.C, the modified PVA films presented a significant enhancement of the dielectric
constant and energy storage density by 10−100-fold over neat PVA. The polarization-electric loops indicated that the PVA
composite films possessed increased saturation polarization in comparison to neat PVA film. The remnant polarization of PVA
composite films was improved by around 3200 times with 9 wt % TEDA.C. Also, the TEDA.C@PVA films exhibited 85%
transparency throughout the visible spectrum, 116% increase in storage modulus, and 274% elongation at fracture. These
unprecedented high-κ dielectric, optical, and mechanical properties may break the restrictions in the applications of
traditional ferroelectric materials and greatly expand the usage of dielectric polymers in broad fields.

With the increasing demands of energy, exhaustion of
nonrenewable fossil fuels has become one of the
most pressing issues on earth.1−4 Although various

ways to harvest energy from sustainable energy sources (solar,
wind, tide, etc.) have been invented, the majority of transduced
energy is lost during handling, transporting, and storage, which
heavily limits the application of these technologies. Therefore,
efficient, sustainable, and environmentally friendly pathways to
prepare energy-storage materials are urgently needed.5−7

Dielectric capacitors with high dielectric constant and high
energy storage density have drawn increasing attention as a
simple and efficient method for rapid storage and release of
energy.8,9 Among them, soft polymers have become the
attractive materials for next-generation dielectric capacitors
owing to the flexibility, ultra-high breakdown strength, ultra-
low dielectric loss, lightweight, easy processing, and cost-
effectiveness. However, their low permittivity limits their
applications on dielectric capacitors,10 dielectric actuators,11−15

and flexible electronic devices.16

To improve the permittivity, people have been incorporating
high dielectric constant inorganic materials or conducting
materials in polymer matrices, such as ferroelectric materials,

semiconductors, metals, and carbon nanomaterials.17−21

Among those additives, the ferroelectric materials, with
spontaneous electric polarization, which can be reversed by
external electric field, have captured broad interests because of
their high dielectric constants.22−24 To date, the majority of
the commercial ferroelectrics are inorganic perovskite oxides,
such as barium titanate and lead zirconate titanate.25,26

However, these materials contain heavy-metal elements and
require costly thermal and vacuum processing during
preparation.27 In addition, the large loading of fillers may
cause aggregation, structural defects, and reduction of
transparency and flexibility of the polymer composites
materials, which will reduce the optical and mechanical
performance of those composite polymer materials.28 Mean-

Received: March 5, 2020
Accepted: March 27, 2020
Published: March 27, 2020

Letter

www.acsmaterialsletters.org

© 2020 American Chemical Society
453

https://dx.doi.org/10.1021/acsmaterialslett.0c00086
ACS Materials Lett. 2020, 2, 453−460

D
ow

nl
oa

de
d 

vi
a 

U
N

IV
 O

F 
C

A
L

IF
O

R
N

IA
 L

O
S 

A
N

G
E

L
E

S 
on

 M
ay

 1
2,

 2
02

0 
at

 2
2:

45
:3

9 
(U

T
C

).
Se

e 
ht

tp
s:

//p
ub

s.
ac

s.
or

g/
sh

ar
in

gg
ui

de
lin

es
 f

or
 o

pt
io

ns
 o

n 
ho

w
 to

 le
gi

tim
at

el
y 

sh
ar

e 
pu

bl
is

he
d 

ar
tic

le
s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Yunyun+Yang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Yusen+Zhao"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jun+Liu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Zekun+Nie"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jun+Ma"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Mutian+Hua"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Yucheng+Zhang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Xufu+Cai"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ximin+He"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ximin+He"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acsmaterialslett.0c00086&ref=pdf
https://pubs.acs.org/doi/10.1021/acsmaterialslett.0c00086?ref=pdf
https://pubs.acs.org/doi/10.1021/acsmaterialslett.0c00086?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acsmaterialslett.0c00086?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acsmaterialslett.0c00086?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acsmaterialslett.0c00086?fig=tgr1&ref=pdf
https://pubs.acs.org/toc/amlcef/2/5?ref=pdf
https://pubs.acs.org/toc/amlcef/2/5?ref=pdf
https://pubs.acs.org/toc/amlcef/2/5?ref=pdf
https://pubs.acs.org/toc/amlcef/2/5?ref=pdf
www.acsmaterialsletters.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://dx.doi.org/10.1021/acsmaterialslett.0c00086?ref=pdf
https://www.acsmaterialsletters.org?ref=pdf
https://www.acsmaterialsletters.org?ref=pdf


while, soft electronics have emerged with the attractive
properties of being highly integrated, lightweight, portable,
wearable, and implantable.29−31 Flexible polymers with high
dielectric constants have been considered as ideal dielectric
materials to store electric energy.31−33 Among them, organic
molecular ferroelectrics have been extensively studied to
overcome the drawbacks of some commercial ferroelectrics,34

exhibiting large spontaneous polarization (20 μC/cm2) for
croconic acid35 and high Curie temperature (426 K).36

According to the work of Tang et al.,37 a biaxial molecular
ferroelectric, [Hdabco]ClO4 (dabco = diazabicyclo[2.2.2]-
octane) (Figure S1), could be prepared by an environment-
friendly approach and showed ultrafast polarization switching
ability under high-frequency and high-temperature conditions
However, the intrinsic rigid and brittle properties of TEDA.C
limit its application on stretchable and flexible devices.
In this work, we successfully developed a new class of

transparent and stretchable high-dielectric-constant composite
polymer films by in situ embedding biaxial molecular
ferroelectrics TEDA.C in PVA films. PVA was selected as
the host matrix because of its high dielectric strength,38 high
mechanical strength, excellent transparency, water-solubility,39

and dopant-dependent electrical conductivity.40−42 The
TEDA.C displayed uniform distribution in PVA films as
observed by AFM and POM. PVA served as a decent
protective matrix for TEDA.C because of the hydrogen
bonds between TEDA.C and PVA interface. The as-formed
films showed over 85% optical transparency in the visible-light
region and high mechanical strength while maintaining
stretchability up to 274%. Because of the strong ferroelectric
property of TEDA.C, the α-relaxation of PVA and the micro-
Brownian motion of long chain segments in the amorphous
regions of PVA,43,44 the conductivity of the composite film was
notably increased by 3 orders of magnitude by doping 9 wt %
TEDA.C. The dielectric constant was up to 104, which was
10−100-fold over that of neat PVA, comparable to inorganic
perovskite oxide- or conductive material-modified polymer
composites,17−21 and superior to state-of-the-art dielectric PVA
systems in previous reports.45−48 The polarization-electric
loops indicated that PVA composite films possessed increase in
remnant polarization by around 3200 times. The high
dielectric constant, stretchability and optical transparency of
TEDA.C@PVA composites have potential on multifunctional
electroactive application14 with low applied voltage for soft-
robotics,11,12 optics,15 and microfluidics.13

First, we synthesized the TEDA.C and characterized the
chemical structures (Figures S2 and S3), crystallization
properties (Figure S4), microscopic morphologies (Figures
S5 and S6), optical properties (Figure S7), thermal properties
(Figures S8−10), and dielectric properties (Figures S11−S19).
To form the composite films for dielectric applications, we
utilized solution casting after which The TEDA.C and PVA
were crystallized upon evaporation of water (Figure 1A). The
interaction of TEDA.C crystals with polymer chains and the
charge accumulation at the interfaces between the TEDA.C
crystals and the PVA chains were depicted in Figure 1B. In
addition to using PVA as host materials, polypropylene (PP)
and polyvinylidene fluoride (PVDF) were used to form
uniform samples by melt processing and solution coating.
Their results (Figures S20 and S21) indicated TEDA.C cannot
improve the dielectric properties of PP and PVDF without the
interaction of TEDA.C and hydroxyl groups. The mutual
dissolution of TEDA.C in PVA allowed needle-like crystals to

be uniformly dispersed in PVA matrix (Figure 1F).
Furthermore, the ultrafast polarization switching of TEDA.C
greatly improved the dielectric constant of the PVA composite
under AC electric field. In addition, another factor was the
MWS interfacial polarization.49,50 Here, the interfacial polar-
ization via MWS effect was increased with the increasing
TEDA.C crystal impregnation into the PVA. Additionally, the
interparticle distances between the TEDA.C decreased and
some cross-links between TEDA.C crystals appeared with the
increment of doping content. With 13 wt % addition of
TEDA.C, the gradual crosslinking of crystals formed a
dendritic crystal network within PVA matrix, which can act
as conducting network and increase the dielectric constant.
The hydrogen bonds between negative charges on the

crystal surface (N) and H atoms on the polymer backbone can
form a dipole that responds to the applied electric field.
Previous reports have demonstrated that large dipole moment
of such hydrogen bonds can be the key factor for dielectric
constant enhancement of a PVDF/hydrated metal salt
composite51 and PVDF/MXene.18 We also investigated the
change in bond strength between −OH bonds in PVA by
Attenuated total reflection (ATR) (Figure 1C). With the
increased concentration of TEDA.C, the peak of −OH blue-
shifted and the transmission of −OH decreased, indicating
more hydrogen bonds formed in the film. Figure 1D and
Figure 1E showed the Fourier-transform infrared spectrum
(FTIR) of films under AC electric field (the 3D views of FTIR

Figure 1. (A) Schematics of the preparation of TEDA.C@PVA
films. (B) Mechanism of TEDA.C@PVA films: the formation of
conducting networks, hydrogen bonding, and the interfacial charge
accumulation contribute to the dielectric property. (C) ATR
spectrum of PVA composite films (5T@1788PVA: the weight ratio
of TEDA.C and 1788PVA was 5:100). (D) FTIR spectrum (with
34 scans) of 1788PVA (33 μm) films under 0.1 Hz, 0.95 V/mm AC
electric field. (E) FTIR spectrum (with 34 scans) of 5T@1788PVA
films (33 μm) under 0.1 Hz, 0.95 V/mm AC electric field. (F)
POM images of 1788PVA, 5T@1788PVA, 10T@1788PVA, 15T@
1788PVA, and 20T@1788PVA.
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spectrum are shown in Figure S22). To avoid the effect of film
transparency on the absorption of infrared spectrum, low
addition of TEDA.C composites films were chosen for this
measurement. The region of 3600−3000 cm−1 corresponded
to the stretching vibration of O−H groups. The absorbance of
1788PVA was about 80% of that of 5T@1788PVA. Notably,
changes in the absorbance strength of 5T@1788PVA occurred
under AC electric field, suggesting the dipole moment of
hydrogen bonds formed by charges accumulation at composite
interfaces under AC electric field. The POM images showed
that 1788PVA was contrast-less and homogeneous owing to
the amorphous structure of poly(vinyl alcohol) (Figure 1F).
The addition of TEDA.C led to the formation of rod-like
crystals. With the increasing concentration of TEDA.C, the
length and diameter of the crystals also increased. When the
addition of TEDA.C was above 9 wt %, dendritic crystals with
crosslinked network began to form.
Figure 2 listed the frequency-dependent, temperature-

dependent dielectric constants and dielectric loss. The results
showed that, with low addition (4.7, 9, and 13 wt %) of

TEDA.C, the dielectric constant of PVA composites increased
by 10−50 times over the entire tested frequency range from 10
Hz to 1 MHz. This pronounced increase in the dielectric
constant of composite films can be attributed to the strong
ferroelectric property of TEDA.C, which comes from the
chemical nature of the material (Figures S11−13 and S16−
S18).37 For the composite with 16 wt % TEDA.C, its dielectric
constant grew exponentially with decreasing frequency. The ε′
of 33356.9 obtained at 0.1 Hz was 6271.2 times of 1788PVA
without TEDA.C at room temperature (Figure 2A1, the same
comparison at 383 K was showed in Figure S23). The
increment was due to the Maxwell−Wagner−Sillars interfacial
polarization occurred at the interfaces between the TEDA.C
and PVA chains, which typically appeared within a
heterogeneous system of phases with nonidentical conductivity
via accumulation of charges at the interfacial surfaces.49,50 To
the best of our knowledge, the dielectric constant increase
demonstrated in this work were higher than previous works, as
summarized in Table 1. Meanwhile, the film can maintain a
low dielectric loss with slightly lower addition of TEDA.C
before 10 Hz as shown in Figure 2B1. The dielectric losses of
the 5T@1788PVA (the weight ratio of TEDA.C and 1788PVA
was 5:100), 10T@1788PVA, 15 T@1788PVA thin films were
lower than that of 1788PVA at low frequency, which may be
due to the polarization effects and dipoles of TEDA.C. The
temperature-dependent dielectric constants and dielectric loss
of 1788PVA and 10T@1788PVA films at different frequency
were shown in Figure 2A2 and 2B2. The dielectric constants of
the 1788PVA and 10T@1788PVA films both increased with
temperature. The values for 10T@1788PVA were consistently
higher than those for 1788PVA and the differences further
increased under high temperatures and low frequency. This
result indicated the enhancement of charges storage ability by
incorporating TEDA.C, which was implied from the significant
increase of dielectric constant.52 In Figure 2B2, the peaks of
dielectric loss for 10T@1788PVA shifted to low temperature,
which was attributed to the αa-relaxation of PVA, during which
the micro-Brownian motion of long chain segments in the
amorphous regions of PVA took place.43,44 The peak of
1788PVA appeared at 375 K and was attributed to the αc-
relaxation.53,54 This peak was above the Tg tested by DMA
(Figure 4C), which was due to the segmental motion in the
1788PVA crystalline phase.44 For 10 and 100 Hz frequency,
the dielectric loss of 10T@1788PVA was higher than that of
1788PVA. For 1788PVA, as the covalent bond rotated under
cyclic electric field, the existing flexible polar groups with polar
bonds caused dielectric-transition. Thus, embedding the
TEDA.C crystallite within the PVA chains facilitated the
segmental motion and decreased 1788PVA crystalline phase,
which in turn lead to more flexible polymer chains and, hence,
enhanced the tan δ.41,55 Both temperature- and frequency-
dependent dielectric properties of the 1788PVA and 10T@
1788PVA films were shown in Figure 2A3, 2A4, 2B3, and 2B4.
The 10T@1788PVA showed a rapid increase of dielectric
constant with the addition of TEDA.C, as well as the
interaction between TEDA.C and PVA chains.
The polarization-electric loops (P-E loops) of 1788PVA and

10T@1788PVA were tested under different electric fields at
1000 Hz (Figure 3). 10T@1788PVA films displayed increased
saturation polarization in comparison to that of neat PVA film.
In this study, the remnant polarization of composites was
0.779μC/cm2 at 60 MV/m, whereas that of the neat PVA film
was around 0.000243 μC/cm2 at 60 MV/m. The coercive field

Figure 2. Frequency dependence of (A1) the dielectric constant at
0.1 Hz−10 MHz at room temperature and (B1) the dielectric loss
at 0.1 Hz−10 MHz at room temperature. Temperature depend-
ence of (A2) the dielectric constant at 100 Hz, 1 kHz, 10 kHz, and
10 MHz and (B2) the dielectric loss at 100 Hz, 1 kHz, 10 kHz, and
10 MHz. Both temperature frequency dependence of (A3, A4)
dielectric constant and (B3, B4) the dielectric loss of 1788PVA
and PVA composites films.
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of PVA composite films was increased by about 941.7 times
with 9 wt.% TEDA.C. According to the Weibull distribution
curves (Figure 3C), the breakdown strength (Eb) under AC
electric field of each films was calculated (Table 2). With low
TEDA.C addition, the breakdown strength of PVA composite
films decreased slowly. But the decrease in the breakdown
strength of PVA composites films with 13 wt.% and 16 wt.%

TEDA.C were bigger. This should be due to the TEDA.C
dendritic crystal network within PVA matrix. According to the
calculated breakdown field strength and dielectric constant, we
calculated maximum energy storage density of the TEDA.C@
PVA films (Figure 3D). For 1788PVA, the maximum energy
storage density was 0.06−0.20 J/cm3, increasing with the
decreasing frequency. When the frequency was 1 kHz, the
maximum energy storage density of 5T@1788PVA, 10T@
1788PVA, and 15T@1788PVA was 6.15×, 7.96×, and 6.53×
of 1788PVA. The surface morphology and distribution of the
TEDA.C in PVA films were characterized by AFM. 10T@
1788PVA showed increased surface roughness due to the
crystallization of TEDA.C (further confirmed by POM and
AFM in Figures S6 and S7) and uniform phase dispersion of
TEDA.C in 1788PVA (Figure 3E). Interestingly, the phase
degree of the composite film was not increased, implying that
no phase separation occurred on the surface of film and that
the TEDA.C crystals were inside the film. These results
suggested that PVA can form a good protective layer over the
TEDA.C crystals by hydrogen bonding at the interfaces
between TEDA.C and PVA interface.
Composites films with adjustable transmittance and good

flexibility were also highly desirable in the design of flexible
electronics.56−58 The PVA/TEDA.C composite films with 4.7
and 9 wt % TEDA.C maintained ultrahigh transmittance
throughout the visible range (Figure 4A, the photo of films was
in Figure S24). The formation of uniform transparent film is

Table 1. Increase of the Dielectric Constants in Different Systems

samples polymer fills additive amount dielectric constant increment refs

1 PDMSa M-CCTOb 2 wt % ∼14 38% at 10 Hz 20
2 PVDF-HFPc BT-NPsd 10 vol % ∼9.6 67% at 0.01 Hz 6
3 PVDF-HFPc BT-NWse 10 vol % ∼104 300 times at 0.01 Hz 6
4 PVDF-HFPc BTf 70 vol % ∼38 2 times at 100 Hz 7
5 PVDFg Mg-salth 2 wt % ∼35 2.5 times at 1000 Hz 51
6 PVDFg PI@BTi 40 wt % ∼148 7.4 times at 10 Hz 62
7 ABSj MWCNTk 7 wt % ∼400 100 times at 100 Hz 21
8 ABSj GCNTl 10 wt % ∼85 40 times at 100 Hz 21
9 P(VDF-TrFE-CFE)m BNNSn 25 wt % ∼55 15% at 100 Hz 32
10 epoxy F-MWCNTo 8 wt % ∼60 11.9 times at 100 Hz 17
11 PMMA/P(VDF-HFP) DOPA@TiO2

p 20 wt % ∼13 1.24 times at 100 Hz 63
12 PVA CuI 7.5 wt % ∼1000 2.5 times at 100 Hz 55
13 PVA TEDA.C 4.7 wt % 30 12.7 times at 10 Hz this work
14 PVA TEDA.C 16 wt % 610 285.36 times at 10 Hz this work
15 PVA TEDA.C 9 wt % 24486 943 times at 10 Hz at 383 K this work
16 PVA TEDA.C 9 wt % 15.6 9.5 times at 107 Hz this work

aPolydimethyl siloxane. bMagnesium-doped calcium copper titanate. cPoly(vinylidene fluoridetrifluoroethylene). dBaTiO3 nanoparticles.
eBaTiO3

nanowires. fBaTiO3.
gPolyvinylidene fluoride. hMgCl2·6H2O.

iPolyimide (PI) interlayer with nanoscale thickness was coated on the surface of
barium titanate (BaTiO3, BT) through the in-situ polymerization and subsequent thermal imidization treatment. jAcrylonitrile−butadiene−styrene.
kMultiwalled carbon nanotube. lGraphene oxide-carbon nanotube. mPoly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) terpolymer.
nBoron nitride nanosheets. oFluorinated MWCNTs. pPolydopamine-coated TiO2.

Figure 3. Hysteresis loops at 1000 Hz under different electric fields
for (A) 1788PVA films and (B) 10T@1788PVA. (C) Weibull
distribution curves of PVA composites with different content of
TEDA.C at room temperature under AC electric field. (D)
Dependency of frequency for the calculated maximum energy
storage density of the TEDA.C@PVA films at room temperature
under AC electric field. (E1) AFM topographic image of 1788PVA,
(E2) AFM phase image of 1788PVA, (E3) AFM topographic image
of 10T@1788PVA, and (E4) AFM phase image of 10T@1788PVA.

Table 2. Weibull Parameters and Electrical Breakdown
Strength of PVA and PVA Composite Films

samples intercept slope E0
a (MV/m)

1788PVA −124.11 27.38 92.76
5T@1788PVA −123.15 27.71 84.77
10T@1788PVA −170.74 39.59 74.44
15T@1788PVA −50.70 12.92 50.40
20T@1788PVA −66.73 18.80 34.81

aDielectric strength was tested under AC electric field
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due to the similar solubility of TEDA.C and PVA that facilitate
obtaining homogeneous and transparent solution. The good
optical transparency of the composite film enabled its potential
applications for stretchable and transparent actuators,59 touch
panel,60 and electric skin.61 For the mechanical properties
(Figure 4B), the 5T@1788PVA and 10T@1788PVA compo-
sites films exhibited fracture strain as high as 274%, which is
almost the same as the PVA only films, suggesting the excellent
TEDA.C distribution in the film. Notably, films containing 16
wt % TEDA.C can still maintain the elongation at break
around 222%. Meanwhile, the tensile strength was increased
from 41.7 to 51.7 MPa with addition of 4.7 wt % TEDA.C.
When the TEDA.C was further increased to 20 wt %, the
tensile strength of the film decreased to 43.7 MPa, but it was
still higher than that of pure 1788PVA. Meanwhile, the thermal
stability of composites films was also studied by thermal
gravimetric analyzer (TGA). The results showed the excellent
dispersion of TEDA.C in PVA material did not impair the
thermal stability of PVA (in Figure S25).
Figure 4C showed the temperature dependence of the tan δ

for PVA and TEDA.C-incorporated PVA films. The peak of
tan δ curve for 10T@1788PVA shifted to lower temperature.
Figure 4D showed the tensile storage modulus at 1 Hz as a
function of temperature for PVA films and TEDA.C composite
films. Below the Tg of PVA, there was a noticeable increase in
modulus for both films because of the restricted chain mobility.
The modulus for the 10T@1788PVA film increased for 116%,
compared to the 1788PVA at 260 K. But above the Tg of PVA,

there was great reduction in the modulus. The dielectric
modulus showed the segment relaxation under AC electric
field (Figure 4E and 4F). With the addition of TEDA.C, the
peaks of dielectric modulus shifted to high frequencies and
decreased to low values, confirming the interaction of
TEDA.C, and PVA chains decreased the Tg of PVA. For
example, the storage modulus for 10T@1788PVA film
decreased by 44% at 370 K, yet still higher than that of PVA
films.
In this work, we synthesized and demonstrated a flexible and

transparent TEDA.C/PVA composite film with significantly
enhanced dielectric constant by hydrogen bond interaction.
The dielectric constant can be increased by 10−50 times with
low addition of TEDA.C. This remarkable performance was
contributed by the ultrafast polarization switching of TEDA.C
in AC electric field and interfacial interaction. The enhance-
ment of the stretching vibration of −OH groups in composite
film by ATR tests and the absorbance strength of −OH groups
for 5T@1788PVA under AC electric field suggested that the
dipole moment of hydrogen bonds formed by the accumu-
lation of charges at the interfaces between TEDA.C crystals
and polymer backbones contribute to the improvement of
dielectric constant in this system. According to the Weibull
distribution law, the breakdown strength of PVA composite
films decreased slowly with low addition of TEDA.C. However,
the increasing dielectric constant improved the maximum
energy storage density of PVA composites. The calculated
maximum energy storage density of 10T@1788PVA was 10.7×
of that of 1788PVA at 100 Hz. The results of P-E loops
indicated that the remnant polarization of PVA composite
films increased by 3200 times with 9 wt % TEDA.C, which
suggested that TEDA.C significantly increased the ferroelectric
property of 1788PVA. The AFM and POM characterizations
implied the TEDA.C crystals were uniformly dispersed in PVA
matrix. With the increase of TEDA.C, rod-like structure of
TEDA.C crystals gradually changed to crosslinked morphology
at >9 wt % TEDA.C concentration. The tan δ of 10T@
1788PVA slightly shifted to lower temperatures with a 116%
increase of the storage modulus, compared to 1788PVA at 260
K in DMA mode. PVA films kept transparent and flexible with
4.7 and 9 wt % addition of TEDA.C, providing attractive
materials for stretchable and transparent actuators, touch panel
and electric skin. In addition, the high dielectric constant,
stretchability, low Young’s modulus and easily control
processing of PVA composite films facilitate TEDA.C@PVA
composites for multifunctional electroactive films for soft-
robotics, optics, and microfluidics.
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